Models Lecture #5

The distance ladder

PHILOSOPHIÆ

NATURALIS

PRINCIPIA

MATHEMATICA.

Autore J.S. NEWTON, Trin. Coll. Cantab. Soc. Matheseos Professore Lucasiano, & Societatis Regalis Sodali.

IMPRIMATUR.

S. P E P Y S, Reg. Soc. P R Æ S E S. Julii 5. 1686.

LONDINI,

Jussu Societatis Regiæ ac Typis Josephi Streater. Prostat apud plures Bibliopolas. Anno MDCLXXXVII.

The Cosmological Distance Scale

D

$$\tan \alpha = \frac{R}{D}$$

law of skinny triangles:

$$\tan \alpha = \sin \alpha = \alpha$$
 (in radians)

$$\alpha$$
 (in radians) = $\frac{R}{D}$

What's a radian?

 2π radians = 360 degrees

1 radian =
$$\frac{360}{2\pi}$$
 degrees \sim 60 degrees

70 60 50 E FCLT 30 TEPOLFDZ 20 LPCTZDBFEO 15 ZOECFLDPBT 10 7 ETOLEBZEFDC B O F C P T F B L F B F Z C O P F

How good are your eyes?

$$\alpha = 0.02^{\circ} \times \frac{60 \text{ minutes}}{1 \text{ degree}} = 1'$$

D

$$\alpha = \frac{1 \text{ AU}}{D}$$
 radians X $\frac{60 \text{ degrees}}{\text{radian}}$

$$\alpha = \frac{60 \text{ AU}}{D}$$
 degrees X $\frac{60 \text{ minutes}}{1 \text{ degree}}$

$$\alpha = \frac{3600 \text{ AU}}{D}$$
 minutes X $\frac{60 \text{ seconds}}{1 \text{ minute}}$

$$\alpha = \frac{206,264.8 \text{ AU}}{D} \text{ seconds}$$

$$\alpha = \frac{1 \text{ AU}}{D}$$
 radians

$$\alpha = \frac{206,264.8 \text{ AU}}{D}$$
 seconds

1 pc =
$$206,264.8$$
 AU = 3.26 light years = 10^{13} ($10,000,000,000,000$) miles

$$\alpha = \frac{pc}{D}$$
 seconds

$$D = \frac{\text{second}}{\alpha}$$

 $\frac{D}{200,000 \text{ AU}} = \frac{\text{seconds}}{\alpha}$

$$\frac{\mathsf{D}}{\mathsf{pc}} = \frac{\mathsf{seconds}}{\alpha}$$

$$\frac{D}{pc} = \frac{seconds}{parallax}$$

star	parallax (")	distance (pc)
α Centauri	0.75	1.3
Barnard's star	0.5	2.0
Sirius	0.4	2.5
Altair	0.2	5.0

Let's think for a second of arc

α	
	Ŋ
	D

$$\alpha = \frac{1 \text{ cm}}{D}$$
 radians

$$\alpha = \frac{200,000 \text{ cm}}{D}$$
 seconds

$$\alpha = \frac{2 \text{ km}}{D}$$
 seconds

α	D
4" 2" 1"	½ km 1 km 2 km
0.1"	20 km
0.01"	200 km
0"	infinity

Twinkle, twinkle little star

Twinkle, twinkle little star

Hipparcos

Planet Imager

Formation Flying

Launch: 2030

32 X 8 meter mirrors Baseline = 6000 km

Planet	angular diameter (in minutes)	
	Ptolemy	True
Mercury	2	0.01
Venus	3	0.5
Mars	1.5	0.15
Jupiter	2.5	0.4
Saturn	1.7	0.2
Bright stars	1.5	~0

How far away are stars? How big are stars?

Earth

30

Both objects have an angular diameter of 3°

They have different apparent brightness
They have different colors
They move
They change in brightness

Loudness: Intensity: energy per second in ear

I_{THRESHOLD} = energy per second in ear at threshold of hearing

I_{PAIN}

= energy per second in ear at threshold of pain

 $I_{PAIN}/I_{THRESHOLD} = ?$

Loudness: Intensity: energy per second in ear

```
I<sub>THRESHOLD</sub> = energy per second in ear
                      at threshold of hearing
                   = energy per second in ear
        PAIN
                      at threshold of pain
I_{PAIN} / I_{THRESHOLD} = 10^{12} !!!
                1-100 (10^2)
              100 - 1,000 (10^3)
           1,000 - 1,000,000 (10^6)
      1,000,000 - 1,000,000,000 (10^9)
 1,000,000,000 - 1,000,000,000,000 (10^{12})
```


Intensity: energy per time per area

$$I = \frac{Energy}{Time Area}$$

$$I_0$$
 = threshold of hearing dB = 10 log (I/ I_0)
$$I/I_0 = 10^{12}$$

$$log (10^{12}) = 12$$

$$dB = 10 X 12 = 120$$

lo is intensity at threshold of hearing

	log (I/ I ₀)	$dB = 10 \log (I/I_0)$
10-2	-2	-20
1	0	0
10 ²	2	20
10 ⁶	6	60
10 ¹²	12	120
10 ²⁰	20	200

Intensity: energy per time per area

$$L = \frac{\text{Energy}}{\text{Time Area}} = \frac{\text{Power}}{\text{Area}}$$

Area measured in cm²

Intensity in watts per cm²

Inverse-square law

Intensity: energy per time per area

Power property of source

Intensity depends on power and distance between source and detector

Intensity = $\frac{power}{4\pi R^2}$

For light!!!

$$I = \frac{Energy}{Time Area}$$

Energy (Luminosity)

measured in watts

Area

measured in cm²

Intensity in watts per cm²

For light!!!

$$I = \frac{luminosity}{cm^2}$$

Luminosity property of source

Intensity depends on power and distance between source and detector

Intensity =
$$\frac{\text{luminosity}}{4\pi R^2}$$

LET THERE BE LIGHT!

Greeks classified stars into 6 classes, or magnitudes

Brightest stars were 1st magnitude Dimmest stars were 6th magnitude

Intensity of brightest stars = $100 \times dimmest$.

The luminosity of nearby stars?

Measure: intensity of light, I parallax → distance

$$I = \frac{L}{4\pi R^2}$$

$$I = \frac{L}{4\pi R^2}$$

star	parallax ('')	distance (pc)	apparent magnitude	luminosity (solar)
lpha Centauri	0.75	1.3	0	1.5
Barnard's star	0.5	2.0	9.5	0.0005
Sirius	0.4	2.5	-1.5	25
Altair	0.2	5.0	8.0	10
Canopus	0.003	330	- 0.7	200,000
Arcturus	0.1	10	0	90
Betelgeuse	0.01	100	0.5	14,000

Our Sun ain't the brightest bulb in the box!

Intensity =
$$\frac{Luminosity}{4\pi R^2}$$

$$L_{SIRIUS} = 25 \times L_{SUN}$$

For stars we know distance to via parallax:

Measure Distance (R) → Know Luminosity **Measure Intensity**

They have different apparent brightness They have different colors They move They change in brightness

COLORS OF THE RAINBOW:

ROYGBIV

Hertzsprung-Russell Diagram

46 bc

Ejnar Hertzsprung (1873-1967)

Henry Russell (1877-1957)

Hyades HR diagram

Hertzsprung-Russell Diagram

Schematic Hertzsprung-Russell Diagram

If Δm between Firstades and Hyades only due to difference in distance, then can express distance to Firstades in terms of distance to Hyades.

$$\frac{I_H}{I_F} = \frac{R_F^2}{R_H^2} \qquad 10 = \frac{R_F^2}{R_H^2} \qquad 3 = \frac{R_F}{R_H}$$

Distances to other clusters

- Construct H-R diagram for cluster
- Measure ∆m compared to HR diagram for Hyades
- Compute distance in terms of distance to Hyades
- How far can you go?
- Say most distant open observable cluster is Lastades

The Cosmological Distance Ladder

Main sequence stars are not extremely bright...
 we need brighter "standard candle"

Intensity =
$$\frac{Luminosity}{4\pi R^2}$$

They move
They have different apparent brightness
They have different colors
They change in brightness

Stars Lyrae

RR Lyrae Stars

- Class named after a particular star: RR Lyrae
- Compared to the sun
 - half the mass
 - older than sun
 - hotter
 - expended hydrogen ... burning helium to carbon
 - pulsates
- Changes brightness with regular period of days
- Luminosity determined by size & temperature
 - for same temperature: larger → more luminous
 - for same size: hotter → more luminous
- Shrink → compressional heating → more luminous

Main sequence stars are not extremely bright...
 we need brighter "standard candle"

Intensity =
$$\frac{\text{Luminosity}}{4\pi R^2}$$

- RR Lyrae stars found in distant clusters we know the distance to via H-R fitting.
- RR Lyrae stars are identified because their light output changes regularly on a time scale of half to one day.
- They are brighter than the sun by about a factor of 100 and are <u>standard candles</u>. Can see farther away and use as standard candle.

The Cosmological Distance Ladder

